

Order Number: 329687-001US

Intel® Quark SoC X1000
Board Support Package (BSP) Build Guide

Release: 0.7.5

15 October 2013

Contents

Intel® Quark SoC X1000
BSP Build Guide
2 Order Number: 329687-001US

Contents
1 Before you begin ..3

2 Downloading software ...4

3 Building the GRUB OS loader ..4

4 Creating a file system and building the kernel using Yocto5

5 Signing files (optional) ...7

6 Building the cross compiler toolchain ...7
6.1 Linux* cross compiler ...7
6.2 Windows* cross compiler ...8
6.3 MAC OS* cross compiler ..9

7 Creating a flash image for the board ..9

8 Defining the platform data file .. 10

9 Programming flash on the board using serial interface .. 11

10 Programming flash on the board using DediProg .. 15

11 Booting the board from SD card .. 16

12 Enabling the OpenOCD debugger .. 17

Before you begin

Intel® Quark SoC X1000
BSP Build Guide

Order Number: 329687-001US 3

1 Before you begin
This guide contains instructions for installing and configuring the Intel® Quark SoC
X1000 Board Support Package Sources.

This software release supports the following hardware and software:

• Intel® Galileo Customer Reference Board (CRB) (Fab D with blue PCB)

• Board Support Package Sources for Intel® Quark SoC X1000 v0.7.5

Before you begin:

• You need a host PC running Linux*.

• You need an internet connection to download third party sources.

• The build process may require as much as 30 GB of free disk space.

• To program the board you can use:
− serial interface using capsule.efi (see Section 9)
− DediProg* SF100 SPI Flash Programmer (or equivalent) and the associated

flashing software (see Section 10)
− Intel® Galileo IDE (see the Intel® Galileo Board Getting Started Guide)

Note: Remove all previous versions of the software before installing the current version.

Individual components require very different environments (compiler options and
others). To avoid cross-pollution, the commands in each section below must be
run in a new terminal session every time.

Note: If these commands fail, it may be due to your proxy settings. You may find answers
here: https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

This release has been tested with Debian* Linux* 7.0 (Wheezy) but will work with
other Linux distributions.

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy�

Downloading software

Intel® Quark SoC X1000
BSP Build Guide
4 Order Number: 329687-001US

2 Downloading software
Go here to download the software:

https://communities.intel.com/community/makers/software/drivers

This release contains multiple zip files, including:

• Board Support Package (BSP) sources:
− Board_Support_Package_Sources_for_Intel_Quark_v0.7.5.7z (3.2 MB)

• (Optional) Files for updating SPI flash using serial interface (Section 9).
LITTLE_LINUX_IMAGE_FirmwareUpdate_Intel_Galileo_v0.7.5.7z (5.5 MB)
− CapsuleApp.efi
− sysimage_Intel_Galileo_v0.7.5.cap

You will create a binary capsule file as part of the build process in this guide.

Debian provides a meta package called build-essential that installs a number of
compiler tools and libraries. Install the meta package and the other packages listed in
the command below before continuing:

sudo apt-get install build-essential gcc-multilib vim-common

3 Building the GRUB OS loader
Note: GRUB is provided in two places: inside the meta-clanton Yocto BSP or independently.

If you will run Yocto, skip this section and use the file output by Yocto in this
directory: yocto_build/tmp/deploy/images/grub.efi

If you are only interested in building a 4M Flash image and not in using Yocto, then
proceed through this section.

Dependencies:

• GCC (tested with version >= 4.6.3 and libc6-dev-i386)

• gnu-efi library (tested with version >= 3.0)

• GNU Make

• Autotools (autoconf and libtool)

• Python >= 2.6

• git

• xxd

https://communities.intel.com/community/makers/software/drivers�

Creating a file system and building the kernel using Yocto

Intel® Quark SoC X1000
BSP Build Guide

Order Number: 329687-001US 5

This GRUB build requires the 32 bit gnu-efi library which is included with many Linux
distributions. Alternatively, you can download the latest version from:
http://sourceforge.net/projects/gnu-efi/files

Unpack and compile the gnu-efi library using the commands:
tar -xvf gnu-efi*
cd gnu-efi*/gnuefi
make ARCH="ia32"
cd -

To build GRUB, first open a new terminal session, extract the grub package, and run
the gitsetup.py script. The script downloads all the upstream code required for grub
and applies the Clanton patch.

Run the following commands:
tar -xvf grub-legacy_*.tar.gz
cd grub-legacy_*
./gitsetup.py
cd work
autoreconf --install
export CC4GRUB='gcc -m32 -march=i586 -fno-stack-protector'
[GNUEFI_LIBDIR=/full/path/to/gnu-efi-3.0/gnuefi/] CC="${CC4GRUB}"
./configure-clanton.sh
make
cd -

For the configure step, if you are not using Debian and had to manually install
gnu-efi in a non-system location, then you need to point GNUEFI_LIBDIR at the
location where gnu-efi was compiled or installed.

Note: If these commands fail, it may be due to your proxy settings. You may find answers
about proxy settings here:
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

The required output from this build process is the efi/grub.efi file.

4 Creating a file system and
building the kernel using Yocto
Dependencies:

• git

• diffstat

• texinfo

• gawk

• chrpath

• file

http://sourceforge.net/projects/gnu-efi/files�
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy�

Creating a file system and building the kernel using Yocto

Intel® Quark SoC X1000
BSP Build Guide
6 Order Number: 329687-001US

Note: git requires proxy configuration. If these commands fail, it may be due to your proxy
settings. You may find answers about proxy settings here:
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Use Yocto to create a root file system and kernel that boots the system from an SD
card or USB key. Do not run any of the commands in this section as root.

Note: See Section 6 to create a Linux image with development tools such as gcc.

First, open a new terminal session, extract the yocto layer, and run the setup.sh
script to download the external sources required for the yocto build:
tar -xvf meta-clanton*.tar.gz
cd meta-clanton*
./setup.sh

Next, source the oe-init-build-env command to initialize the yocto build
environment, and run bitbake <target> to build the root file system and kernel. You
will use Galileo-specific <target> commands described below.

Two build methods are supported; the output is slightly different for each one.
1. If you want to build a very small Linux to fit into SPI flash, then run

bitbake image-spi as shown below:

source poky/oe-init-build-env yocto_build
bitbake image-spi

The output of the build process is found in ./tmp/deploy/images/ and includes
the following files:
− image-spi-clanton.cpio.gz
− image-spi-clanton.cpio.lzma
− bzImage
− grub.efi

2. If you want to build a more fully-featured Linux to run out of the SD card, then
run bitbake image-full as shown below:

source poky/oe-init-build-env yocto_build
bitbake image-full

The output of the build process is found in ./tmp/deploy/images/ and includes
the following files:
− image-full-clanton.ext3
− core-image-minimal-initramfs-clanton.cpio.gz
− bzImage
− grub.efi
− boot (directory)

The kernel and root file system (bzImage and image-nnnn.gz, respectively) can be
copied onto a USB stick or SD card and booted from grub.

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy�

Signing files (optional)

Intel® Quark SoC X1000
BSP Build Guide

Order Number: 329687-001US 7

5 Signing files (optional)
This step is only needed for secure boot, otherwise it can be skipped.

Kernel and root file system (bzImage and image-full-clanton.cpio.gz) require
signature files for verification.

Open a new terminal session and use the following commands:
cd sysimage_4M*/sysimage.CP-4M-release
export LINUX_PATH=../../meta-clanton*/yocto_build/tmp/deploy/images

../../spi-flash-tools*/Makefile SRCS_SIGN=$LINUX_PATH/bzImage \

$LINUX_PATH/bzImage.SVNINDEX=6 $LINUX_PATH/bzImage.signed
../../spi-flash-tools*/Makefile \

SRCS_SIGN=$LINUX_PATH/image-full-clanton.cpio.gz \
$LINUX_PATH/image-full-clanton.cpio.gz.SVNINDEX=7 \
$LINUX_PATH/image-full-clanton.cpio.gz.signed

cd $LINUX_PATH

Signature files for kernel and root file system (bzImage.csbh and image-full-
clanton.cpio.gz.csbh, respectively) can be copied onto a USB stick or SD card.

6 Building the cross compiler
toolchain
This section describes how to build an image that includes development tools for the
following operating systems:

• Linux* cross compiler

• Windows* cross compiler

• MAC OS* cross compiler

6.1 Linux* cross compiler
The steps to build the cross compiler toolchain are the same as the steps for the Yocto
root file system and kernel build as described in Section 4, with the exception of the
bitbake command.

To build the tool chain, open a new terminal session and follow the steps in Section 4
but modify the bitbake command as follows:

bitbake image-full -c populate_sdk

The same files can be used for both builds, however, you must source the
poky oe-init-build-env yocto_build every time you use a new terminal.

Building the cross compiler toolchain

Intel® Quark SoC X1000
BSP Build Guide
8 Order Number: 329687-001US

The output of the build process is a script that installs the toolchain on another
system:

clanton-full-eglibc-x86_64-i586-toolchain-1.4.1.sh

The script is located in ./tmp/deploy/sdk

When you are ready to compile your application, first run the source command below
to define default values for CC, CONFIGURE_FLAGS, and other environment variables,
then you can compile:
source /opt/poky/1.4.2/environment-setup-x86_32-poky-linux
${CC} myfile.c -o myfile
or
source /opt/poky/1.4.2/environment-setup-x86_64-poky-linux
${CC} myfile.c -o myfile

For more details, see the Yocto Application Development Toolkit (ADT) information:
https://www.yoctoproject.org/tools-resources/projects/application-development-
toolkit-adt

Note: The script above may change your environment significantly, thus breaking other,
non-Yocto tools you might be using (including anything which uses Python). To
mitigate, Intel recommends that you open one terminal session to source the Yocto
environment and run make, and run all your other commands in other terminal
sessions.

Quark Linux uses uclibc, which is a C library optimized for embedded systems. This
enables a very small Linux that can fit into SPI flash with the UEFI bootloader and
Grub OS loader.

If you do not have any size constraints, you can change the C library to a more fully
featured C library. Detailed instructions are here:
http://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html
specifically how to change the TCLIBC variable selecting the C library to be used.

6.2 Windows* cross compiler

1. Follow all steps from Section 4.
2. Enter the commands below:

cd ..
git clone git://git.yoctoproject.org/meta-mingw
cd yocto_build

3. Edit conf/bblayers.conf and add the full path to cloned meta-mingw layer.
4. Make sure the conf/local.conf file contains: SDKMACHINE = “i686-mingw32”
5. Enter the command: bitbake meta-toolchain
6. Toolchain will be created under tmp/deploy/sdk

https://www.yoctoproject.org/tools-resources/projects/application-development-toolkit-adt�
https://www.yoctoproject.org/tools-resources/projects/application-development-toolkit-adt�
http://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html�

Creating a flash image for the board

Intel® Quark SoC X1000
BSP Build Guide

Order Number: 329687-001US 9

6.3 MAC OS* cross compiler

1. Follow all steps from Section 4.
2. Enter the commands below:

cd ..
git clone git://git.yoctoproject.org/meta-darwin
cd yocto_build

3. Edit conf/bblayers.conf and add the full path to cloned meta-darwin layer.
4. Make sure the conf/local.conf file contains: SDKMACHINE = “i386-darwin”
5. Enter the command: bitbake meta-toolchain
6. Toolchain will be created under tmp/deploy/sdk

7 Creating a flash image for the
board
Dependencies:

• GCC

• GNU Make

• EDKII Firmware Volume Tools (base tools)

• OpenSSL 0.9.81 or newer

• libssl-dev

The SPI Flash Tools, along with the metadata in the sysimage archive, are used to
create a Flash.bin file that can be installed on the board and booted.

Open a new terminal session and extract the contents of the sysimage archive:
tar -xvf sysimage_4M*.tar.gz

Extract and install SPI Flash Tools:
tar -xvf spi-flash-tools*.tar.gz

The directory contains a preconfigured layout.conf file. This file defines how the
various components will be inserted into the final Flash.bin file to be flashed onto the
board. The layout.conf consists of a number of [sections] with associated address
offsets, file names, and parameters. Each section must reference a valid file, so it is
necessary to update the paths or create symlinks to the valid files.

An example for the GRUB component is:
ln -s grub-legacy_*/work/ grub-legacy

Ensure there is no whitespace around the values defined in the layout.conf file.

Once a valid layout.conf has been created, run the SPI Flash Tools makefile to
create one of the following files.

Defining the platform data file

Intel® Quark SoC X1000
BSP Build Guide
10 Order Number: 329687-001US

To build a capsule file (recommended), run the commands:
ln -s ../../clanton_peak_EDK2_* ../../clanton_peak_EDK2
../../spi-flash-tools*/Makefile capsule

The output of this build is a *.cap file and other required files. Proceed with
Programming the Flash instructions in either Section 9 or Section 10.

To build a Flash.bin file:
ln -s ../../clanton_peak_EDK2_* ../../clanton_peak_EDK2
../../spi-flash-tools*/Makefile

The output of this build is a Flash.bin file. Continue with Section 8.

8 Defining the platform data file
Note: If you created a *.cap file in the previous section, a platform data file is not required

and you can skip this section.

Platform data is part-specific, unique data placed in SPI flash. Every Flash.bin image
flashed to the board must be patched individually to use platform data. A data
patching script is provided in this release.

The platform data patching script is stored in the SPI Flash Tools archive. Before
running the script, open a new terminal session and edit the
platform-data/platform-data.ini file to include platform-specific data such as MAC
address, platform type, and MRC parameters.

On reference platforms, the MAC address to be programmed is printed on the product
label.

Note: The Intel® Quark SoC X1000 contains two MACs and each must be configured with
one address in the platform.ini file, even on boards (such as Galileo) that have only
one Ethernet port.
For Galileo, MAC 0 is the only MAC wired out, however, you must also configure MAC 1
with a dummy valid UNICAST MAC address in the platform.ini file.

Galileo / Kips Bay Fab D example is below, recommended values are shown in bold
text:
[Platform Type]
id=1
desc=PlatformID
data.type=hex.uint16
ClantonPeak 2, KipsBay 3, CrossHill 4, ClantonHill 5, KipsBay-fabD 6
data.value=6

WARNING: the MRC parameters MUST match the platformID used above
[Mrc Params]
id=6
ver=1
desc=MrcParams
data.type=file
#data.value=MRC/clantonpeak.v1.bin
#data.value=MRC/kipsbay.v1.bin

Programming flash on the board using serial interface

Intel® Quark SoC X1000
BSP Build Guide

Order Number: 329687-001US 11

#data.value=MRC/crosshill.v1.bin
#data.value=MRC/clantonhill.v1.bin
data.value=MRC/kipsbay-fabD.v1.bin

[MAC address 0]
id=3
desc=1st MAC
data.type=hex.string
data.value=001320FDF4F2 #unique MAC address of your device

[MAC address 1]
id=4
desc=2nd MAC
data.type=hex.string
data.value=02FFFFFFFF01

Next, run the script as follows:

cd spi-flash-tools/platform-data/
platform-data-patch.py -p sample-platform-data.ini \
-i ../../sysimage_4M*/sysimage.CP-4M-debug/Flash-missingPDAT.bin
cd -

This creates a Flash+PlatformData.bin file to be programmed on the board.

To program your board using Dediprog, skip to Section 10.

9 Programming flash on the
board using serial interface
These steps assume you have a microSD card inserted into the slot on the board,
which contains the release-specific sysimage_nnnn.cap file and the CapsuleApp.efi
file.

Caution: The CapsuleApp.efi and the *.cap file are a matched pair and must be used
together. When a new *.cap file is released, you must use the corresponding
CapsuleApp.efi to install it.

Perform the steps below:
1. Use the files created in Section 7 or download the SPI flash image capsule files as

described in Section 2.
2. Copy CapsuleApp.efi and sysimage_nnnnn.cap to a microSD card and insert it

into the slot on the board .
3. Connect the serial cable between the computer and the Galileo board. Set up a

serial console session (for example, PuTTY) and connect to the Galileo board’s
COM port at 115200 baud rate.

4. Configure the serial console session to recognize special characters. For example,
if you are using PuTTY, you must explicitly enable special characters. In the PuTTY

Programming flash on the board using serial interface

Intel® Quark SoC X1000
BSP Build Guide
12 Order Number: 329687-001US

Configuration options, go to the Terminal > Keyboard category and set the
Function keys and Keypad option to SCO.

5. Power on the board. A GNU GRUB boot loader menu is displayed (below).
Exit GRUB by entering c and quit as shown below.

Press c to get a command line.

At the GRUB command line, type quit.

Programming flash on the board using serial interface

Intel® Quark SoC X1000
BSP Build Guide

Order Number: 329687-001US 13

6. The serial console displays a boot device selection box (below).
Select UEFI Internal Shell.

You will see a display similar to this:

7. You will see a print out, the top line of which looks like this:
fs0 :HardDisk - Alias hd7b blk0

This is your SD card. To mount it, type: fs0:
8. Verify you are using the correct version of CapsuleApp.efi by using the -? or –h

option. You must use version 1.1 or later.
9. Enter the following command:

CapsuleApp.efi sysimage_nnnnn.cap

Note: You must enter the full filename of the sysimage_nnnnn.cap file.

Programming flash on the board using serial interface

Intel® Quark SoC X1000
BSP Build Guide
14 Order Number: 329687-001US

You will see a display similar to this:

The CapsuleApp will update your SPI flash image. This process takes about 2
minutes.

Warning: DO NOT remove power or try to exit during this process. Wait for the
prompt to return, otherwise your board will become non-functional.

10. When the update completes, reboot the board by removing and reconnecting the
power cable. You will see a display similar to this:

Programming flash on the board using DediProg

Intel® Quark SoC X1000
BSP Build Guide

Order Number: 329687-001US 15

10 Programming flash on the
board using DediProg
You can use a DediProg* SF100 SPI Flash Programmer and the associated flashing
software to program the board.

Note: These steps require the Flash+PlatformData.bin file that was created in Section 8.

Once the software has been installed and the programmer is connected to the board,
open a new terminal session, and run the DediProg Engineering application.

Use the following steps to flash the board:
1. Select the memory type if prompted when the application starts.
2. Select the File icon and choose the *.bin file you wish to flash.
3. Optionally select the Erase button to erase the contents of the SPI flash.
4. Select raw file format.
5. Select the Prog icon to flash the image onto the board.
6. Optionally select the Verify icon to verify that the image flashed correctly.

When flashing a 4MB image onto an 8MB SPI part it is important that an offset of 4MB
is used. In the DediProg application, Config > Program Configuration > Program
from specific address of a chip should be set to 0x400000.

Note: Intel recommends that you disconnect the programmer before booting the system.

Booting the board from SD card

Intel® Quark SoC X1000
BSP Build Guide
16 Order Number: 329687-001US

11 Booting the board from SD card
To boot your board from an SD card, follow these steps. This setup allows you to save
your sketch to the Galileo board, so it will be able to repeat sketches after board
power-down. This also enables persistent rootfs and persistent /sketch folder.

Dependencies: Ran the command bitbake image-full in Section 4.

1. The output of the build process in Section 4 is found in ./tmp/deploy/images/

Copy the following kernel and root file system files to an SD card:
− boot (directory)
− bzImage
− core-image-minimal-initramfs-clanton.cpio.gz
− image-full-clanton.ext3

Be sure to set up your SD card with the files and structure shown below.

2. Insert the SD card, then power on the board.

Note: The first time you boot the board may take several minutes. This is expected behavior
due to the SSH component creating cryptographic keys on the first boot.

Enabling the OpenOCD debugger

Intel® Quark SoC X1000
BSP Build Guide

Order Number: 329687-001US 17

12 Enabling the OpenOCD
debugger
Dependencies:

• GCC (tested with version 4.5)

• GNU Make

• libtool

To build OpenOCD, open a new terminal session, extract the OpenOCD package, and
run the gitsetup.py script. The script downloads all the upstream code required for
OpenOCD and applies the OpenOCD patch.

Use the following commands:
tar -xvf openocd_*.tar.gz
cd openocd_openocd_*
./gitsetup.py
cd work
./configure4clanton.sh
make

Basic usage:
cp work/src/openocd work/tcl
cd work/tcl

Note: Errors in this point may be caused by proxy settings for http URLs.
You may find answers about proxy settings here:
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

First connect a JTAG debugger to the CRB. Next, run OpenOCD with the correct
interface configuration file for your JTAG debugger.

The example that follows is for an "olimex-arm-usb-ocd-h" JTAG debugger:
sudo ./openocd -f interface/olimex-arm-usb-ocd-h.cfg -f \

board/clanton_board.cfg

You can connect to this OpenOCD session using telnet, and issue OpenOCD commands
as follows:

telnet localhost 4444
halt
resume

For more information, see the Using OpenOCD and Source Level Debug on Clanton
Application Note which is included in this release.

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy�

Revision History

Intel® Quark SoC X1000
BSP Build Guide
18 Order Number: 329687-001US

Revision History

Date Revision Description

15 October 2013 001 First release with software version 0.7.5.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in
personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND
REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2013, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm�

	1 Before you begin
	2 Downloading software
	3 Building the GRUB OS loader
	4 Creating a file system and building the kernel using Yocto
	5 Signing files (optional)
	6 Building the cross compiler toolchain
	7 Creating a flash image for the board
	8 Defining the platform data file
	9 Programming flash on the board using serial interface
	10 Programming flash on the board using DediProg
	11 Booting the board from SD card
	12 Enabling the OpenOCD debugger

